Extensions 1→N→G→Q→1 with N=C32 and Q=C4○D12

Direct product G=N×Q with N=C32 and Q=C4○D12
dρLabelID
C32×C4○D1272C3^2xC4oD12432,703

Semidirect products G=N:Q with N=C32 and Q=C4○D12
extensionφ:Q→Aut NdρLabelID
C321(C4○D12) = C12⋊S3⋊S3φ: C4○D12/C4D6 ⊆ Aut C327212+C3^2:1(C4oD12)432,295
C322(C4○D12) = C12.91S32φ: C4○D12/C4D6 ⊆ Aut C32726C3^2:2(C4oD12)432,297
C323(C4○D12) = C12.S32φ: C4○D12/C4D6 ⊆ Aut C327212-C3^2:3(C4oD12)432,299
C324(C4○D12) = C62.8D6φ: C4○D12/C22D6 ⊆ Aut C327212-C3^2:4(C4oD12)432,318
C325(C4○D12) = C62.36D6φ: C4○D12/C2×C4S3 ⊆ Aut C32726C3^2:5(C4oD12)432,351
C326(C4○D12) = C62.47D6φ: C4○D12/C2×C4S3 ⊆ Aut C32726C3^2:6(C4oD12)432,387
C327(C4○D12) = D6.S32φ: C4○D12/Dic3C22 ⊆ Aut C32488-C3^2:7(C4oD12)432,607
C328(C4○D12) = D6.3S32φ: C4○D12/Dic3C22 ⊆ Aut C32248+C3^2:8(C4oD12)432,609
C329(C4○D12) = Dic3.S32φ: C4○D12/Dic3C22 ⊆ Aut C32248+C3^2:9(C4oD12)432,612
C3210(C4○D12) = C12.73S32φ: C4○D12/C12C22 ⊆ Aut C3272C3^2:10(C4oD12)432,667
C3211(C4○D12) = C12.57S32φ: C4○D12/C12C22 ⊆ Aut C32144C3^2:11(C4oD12)432,668
C3212(C4○D12) = C12.58S32φ: C4○D12/C12C22 ⊆ Aut C3272C3^2:12(C4oD12)432,669
C3213(C4○D12) = C12⋊S312S3φ: C4○D12/C12C22 ⊆ Aut C32484C3^2:13(C4oD12)432,688
C3214(C4○D12) = C12.95S32φ: C4○D12/C12C22 ⊆ Aut C32484C3^2:14(C4oD12)432,689
C3215(C4○D12) = (S3×C6).D6φ: C4○D12/D6C22 ⊆ Aut C32248+C3^2:15(C4oD12)432,606
C3216(C4○D12) = D6.4S32φ: C4○D12/D6C22 ⊆ Aut C32488-C3^2:16(C4oD12)432,608
C3217(C4○D12) = C62.93D6φ: C4○D12/C2×C6C22 ⊆ Aut C3272C3^2:17(C4oD12)432,678
C3218(C4○D12) = C62.96D6φ: C4○D12/C2×C6C22 ⊆ Aut C32244C3^2:18(C4oD12)432,693
C3219(C4○D12) = C3×D6.6D6φ: C4○D12/Dic6C2 ⊆ Aut C32484C3^2:19(C4oD12)432,647
C3220(C4○D12) = C12.40S32φ: C4○D12/Dic6C2 ⊆ Aut C3272C3^2:20(C4oD12)432,665
C3221(C4○D12) = C3×D6.D6φ: C4○D12/C4×S3C2 ⊆ Aut C32484C3^2:21(C4oD12)432,646
C3222(C4○D12) = C3×D125S3φ: C4○D12/D12C2 ⊆ Aut C32484C3^2:22(C4oD12)432,643
C3223(C4○D12) = (C3×D12)⋊S3φ: C4○D12/D12C2 ⊆ Aut C32144C3^2:23(C4oD12)432,661
C3224(C4○D12) = C3×D6.3D6φ: C4○D12/C3⋊D4C2 ⊆ Aut C32244C3^2:24(C4oD12)432,652
C3225(C4○D12) = C62.90D6φ: C4○D12/C3⋊D4C2 ⊆ Aut C3272C3^2:25(C4oD12)432,675
C3226(C4○D12) = C3×C12.59D6φ: C4○D12/C2×C12C2 ⊆ Aut C3272C3^2:26(C4oD12)432,713
C3227(C4○D12) = C62.160D6φ: C4○D12/C2×C12C2 ⊆ Aut C32216C3^2:27(C4oD12)432,723

Non-split extensions G=N.Q with N=C32 and Q=C4○D12
extensionφ:Q→Aut NdρLabelID
C32.(C4○D12) = D366C6φ: C4○D12/C2×C4S3 ⊆ Aut C32726C3^2.(C4oD12)432,355
C32.2(C4○D12) = D6.D18φ: C4○D12/C12C22 ⊆ Aut C32724C3^2.2(C4oD12)432,287
C32.3(C4○D12) = D365S3φ: C4○D12/C12C22 ⊆ Aut C321444-C3^2.3(C4oD12)432,288
C32.4(C4○D12) = Dic9.D6φ: C4○D12/C12C22 ⊆ Aut C32724+C3^2.4(C4oD12)432,289
C32.5(C4○D12) = D18.3D6φ: C4○D12/C2×C6C22 ⊆ Aut C32724C3^2.5(C4oD12)432,305
C32.6(C4○D12) = C3×D365C2φ: C4○D12/C2×C12C2 ⊆ Aut C32722C3^2.6(C4oD12)432,344
C32.7(C4○D12) = C36.70D6φ: C4○D12/C2×C12C2 ⊆ Aut C32216C3^2.7(C4oD12)432,383

׿
×
𝔽